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Abstract. A criterion is introduced to find solutions for the mapping of Ising spin systems
into generalized percolation models through the extension of the Kasteleyn–Fortuin technique,
and specific application to the2D triangular fully frustrated Ising model is given. The clusters
of generalized percolation, selected according to a general scheme, give the way to implement
efficient Monte Carlo (MC) cluster dynamics for frustrated Ising spin systems, and the study of
their geometric properties suggests the understanding ofMC performances.

The introduction of geometrical and percolation concepts to study unfrustrated and frustrated
Ising and Potts models [1, 2] has greatly enhanced both the theoretical understanding of such
systems [3–5] and the possibility of implementing fast Monte Carlo (MC) cluster dynamics
[6–10]. The importance of developing tools to manipulate and control the geometrical
structure of spin clusters and specifically to use it to describe correlation patterns of the
system has been pointed out [11, 12]. The comprehension of the relations between clusters
and spins, i.e. the knowledge of the structure of ‘physical’ clusters [13], has been usefully
exploited in many directions, even if the problem of developing efficientMC dynamics for
frustrated and disordered Ising spin systems is still to be successfully faced.

Recently, a general criterion for defining clusters in such systems has been proposed
through a mapping of the spin system into generalized percolation models imposing
conditions to make the thermodynamical critical behaviour as similar as possible to the
geometrical percolative one [12]. This procedure has proved capable of separating clusters
whose percolation point may be pushed towards the thermodynamical critical point in the
spin system, and whose relatedMC cluster dynamic shows greatly improved performance
in the critical region. The question about the real applicability limits of such a criterion to
generate general efficient cluster dynamics and the possibilities of success of its extensions
to more complex systems remain open.

This paper is focused on such a problem. After a brief description of the extension
to general Ising spin systems of the Kasteleyn and Fortuin mapping equations introduced
in [12], in section 1 general criteria to push cluster connectivity toward spin correlation are
discussed. In section 2 the problem of actually finding solutions of the mapping equations,
and quoted conditions introduced in section 1 to define suitable clusters forMC simulations,
is faced and explicit solutions presented in the case of the2D triangular fully frustrated

† E-mail address: nicodemim@axpna1.na.infn.it

0305-4470/96/091961+11$19.50c© 1996 IOP Publishing Ltd 1961



1962 M Nicodemi

(antiferromagnet) Ising model (FF). The clusters so individuated allow us to generateMC

algorithms for simulations of theFF and some results are presented in section 3.MC

performances are explained examining cluster geometrical characteristics. Along these lines
it is then possible to trace a panorama of possible successes and difficulties in applications
to other more challenging systems.

1. Clusters and Ising spin systems

A well known example where clusters are introduced to study the properties of a system is
the Ising ferromagnetic model (or more generally the unfrustrated Potts models). Kasteleyn
and Fortuin (KF) [3], and later on Coniglio and Klein (CK) [4], have shown that it is
possible to define clusters of spin in this way: if two spins satisfy their mutual interaction
(i.e. SiSj = 1) then you must put a bond between them (‘freeze’ the interaction) with
probability pKF = 1 − e−2βJ (J and β are, respectively, the spin pair interaction strength
and the inverse temperature 1/kBT ), or else do not put any bond (‘delete’ the interaction).
Then, after examining every couple of interacting spins, clusters are the maximal sets of
spins linked by this kind of bond. Such clusters are characterized by a very important
property:

〈SiSj 〉 = 〈γij 〉 (1)

whereγij is one if sitesi and j belong to the same cluster, and zero otherwise, and by
definition 〈γij 〉 is the connectivity function, i.e. the probability of the two sitesi and j

belonging to the same cluster. The above reported equation, which states the coincidence
of spin thermodynamical correlation and connectivity of sites in the clusters, implies that
the thermodynamical transition and percolative transitions belong to the same universality
class and that their critical temperatures are equal,Tc = Tp.

An important property of such clusters, very important for Monte Carlo cluster dynamics,
is that they are absolutely not interacting [7]. So it is possible to implement easily an
algorithm for a clusterMC dynamic as done in the cited pioneering work by Swendsen
and Wang [6]. Such cluster algorithms, being based on clusters which exactly express
the correlation between spins of the system, also allow coherentMC non-local updating at
criticality, and so prevent critical slowing down.

It is easy to extend the above definition of clusters to frustrated and disordered Ising
systems, described by a general Hamiltonian

H = −
∑
〈i,j〉

(J εijSiSj − J0) (2)

whereεij = ±1 is the interaction sign (chosen according to a given probability distribution),
J > 0 is the coupling modulus andJ0 is a constant opportunely fixing the ground-state
energy. Also in this case it is possible to define clusters as above, but whenever frustration
is present, relation (1) is no longer valid and so thermodynamical and percolative transitions
do not coincide [11]. To overcome such a problem you must be able to generate a wider
class of possible clusters, and a natural step in this direction is to make less local moves
for cluster building, i.e. to consider larger portions of the interaction lattice, as suggested
by Kandelet al [10].

The procedure for cluster definition presented above in the form proposed byCK, can be
repeated for every Hamiltonian that can be decomposed into a sum of basic units [10, 12]
as H {Si} = ∑

l Hl{Si}, where the basic unitsHl are elements of a partition of the whole
interactions lattice, as a single pair of interacting spins as before, or plaquettes of nearest-
neighbours spin, and so on (see figure 1). For eachHl we have to consider all the possible
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Figure 1. Examples of possible units for partitions of a2D triangular
lattice (a), (b), (c), and a2D square lattice (a), (d), (e). Each of them
may be the starting point to map the corresponding spin system into a
generalized percolation model (see the text). TheKF approach is based
on a lattice partition made only of single bonds as in (a).

Figure 2. The sets of ‘fundamental graphs’ of bonds for a
frustrated triangular unit are (a) and (b) (see figure 1(b)). Only
set (b) satisfies condition (8) and is adopted for the solution
(10). Present bonds are marked by heavy lines and absent
bonds by narrow lines.

Figure 3. The ‘fundamental graphs’ of a fully frustrated unit as
in figure 1(c), compatible with conditions (8), may be obtained by
rotations or reflection of those here depicted (the heavy lines are present
bonds). Only the first three (with all possible rotation and reflections)
have been adopted to write a solution given by equation (10) in which
only graphs whose bonds are a subset of (a), (b) and (c) may have
weightswα different from zero.

bond configurations inHl , but, given the set of spins ofHl , a bond configuration is only
allowed if in it all the pairs of interacting spin satisfy their mutual interaction. So, for
example, the bond configuration with no bond present is always possible. Examples of
bond configurations on lattice partition units are depicted in figures 2 and 3. To complete
the scheme we have to introduce statistical weightswα, which are quantities to evaluate, for
each bond configurationα on Hl , and to obtain the equivalence of the original spin system
with the new percolative model, to require that for each spin configuration{Si} in Hl [12]:∑

α

wαδα,{Si } = e−βHl({Si }) (3)

where the sum is extended to all bond configurationsα, andδα,{Si } is 1 if the spin and bond
configuration are compatible (i.e. if bonds are present only between a pair of spins satisfying
their mutual interaction) and zero otherwise. It is important to note that equation (3) ensures
that a Monte Carlo cluster random-flip dynamic based on such clusters verifies thedetailed
balance principle(DBP) [12] (in contrast, it is possible to prove that to imposeDBP leads to
(3) [10, 12]).

When frustration is present equation (1) must be substituted with the following [11, 12]:

〈SiSj 〉 = 〈γ ‖
ij 〉 − 〈γ 6 ‖

ij 〉 (4)
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where γ
‖
ij (γ 6 ‖

ij ) is 1 if the spinsi and j belong to the same cluster and are parallel
(antiparallel), otherwise it is 0. Note that (4) generally implies|〈SiSj 〉| 6 〈γij 〉 =
〈γ ‖

ij 〉 + 〈γ 6 ‖
ij 〉.

The spin system may thus be mapped into a vast set of generalized percolation models
[12, 16]. Equation (4) states that the clusters of these models generally do not resemble the
correlation patterns in the system, but are just interfering fluctuations [11]. Equation (4)
implies, moreover, that the critical thermodynamical temperature is always lower than or
equal to the percolative one (Tc 6 Tp) and so thermodynamical and percolative critical
behaviour, for all the many solutions of equation (3), generally do not coincide.

However, it has been suggested elsewhere [12] that it is possible to exploit the redun-
dancy of solutions of equation (3) to select those corresponding to cluster definitions which
might give rise to efficientMC cluster dynamics. It was noted that a crucial point to this aim
is to try to make the correlation and connectivity as equal as possible (and this corresponds
to makingTp as near as possible toTc), in analogy to the Ising ferromagnet where percola-
tive critical phenomena ofKF or CK clusters coincide with the thermodynamical one (see
equation (1)) and such clusters give rise to the efficient Swendsen and WangMC dynamic.

Because|〈SiSj 〉| 6 〈γij 〉, we must then try to select solutions of (3) in order to make
connectivity as small as possible:

〈γij 〉 → minimum (5)

a condition which corresponds, roughly speaking, to shrinking clusters as much as possible,
and is manifested by the indication of aTp nearer and nearer toTc. A direct search of the
absolute minimum of equation (5), given the mapping relations (3), may be an extremely
difficult task, but a simple consequent request in this direction is to try to impose that
correlation and connectivity are equal at least on each single unitHl of the partition of the
lattice (KF or CK clusters verify this condition at least on any single spin pair interaction).
The results of this choice should be better as the partition elements get larger (in the
ideal case where the partition has just one element which coincides with the whole lattice,
one should have the optimal situation|〈SiSj 〉| = 〈γij 〉 as in an Ising ferromagnet). This
requirement, expressed mathematically, leads to the following conditions to be imposed
consistently with equation (3):

〈γij 〉l → minimum (6)

for eachi andj on thelth block (the restriction of (5) to single partition units). Here

〈· · ·〉l =
∑

α,{Si } . . . wαδα,{Si }∑
{Si } e−βHl{Si } (7)

is the mean executed on the degree of freedom of just thelth block.
In [12] the following condition was introduced:

|〈SiSj 〉l| = 〈γij 〉l . (8)

This would correspond to taking the ideal possible minimum in equation (6). However, there
are some cases in which such an ideal minimum is not reachable and equation (8) leads to
absurd results. These cases are often related to the specific choice of the lattice partition on
which to impose equation (8), but a simple example is a partition of the squareFF made of
five plaquettes displaced on a cross (see figure 1(e)). In such an example it is possible to
observe that condition (8) cannot be satisfied atT = 0 and in the low temperature region.

So, even if equation (6) and (8) are in principle totally equivalent, in the sense that they
should individuate the same subsets of solutions of equation (3), it is generally necessary
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to adopt equation (6). However, in what follows, we will not meet such situations and
conditions (6) and (8) will be equivalent.

The method for cluster definition based on the mapping equations (3) and conditions
(8), introduced above, has proved successful [10, 12] in the case of the2D square fully
frustrated lattice [17]. It was proved that cluster building from equation (3) for a lattice
partition made of simple four-spin checkerboard plaquettes (see figure 1(d), imposing
equation (8) (which at this level are totally equivalent to (6)), is enough to ensure that
the thus generated percolation model has clusters with a percolation temperatureTp and
critical percolative exponents numerically indistinguishable fromTc and the corresponding
usual thermodynamical exponents (the geometric properties of aFF square lattice may have
played a simplifying role [14]). The excellent performance ofMC dynamics based on such
clusters was ascribed to this property [10, 12, 14, 19].

As usual when disorder is added to frustration problems get harder. In the case of the2D

square±J Ising spin glass (SG) with Tc = 0, it was shown that under analogous conditions
a good enhancement was possible but, as expected, the problem was not solved. Clusters
built as in theSW algorithm haveTp = 1.8 [20], while with this new technique used for a
four spin plaquettes partitionTp = 1.2, allowing a great improvement inMC simulation at
low temperature [12] if not also at criticality.

The rule to map the spin model in a percolation whoseTp is as near as possible to
Tc then proves successful for simple frustrated systems but the problem is only partially
solved in more difficult cases. In these situations it seems important to be able to take
into account non-local effects linked to disorder and frustration. Relying on the crucial role
of conditions (6) the natural further step to reach a wider equivalence of connectivity and
correlation is to try to define clusters focusing the attention on larger lattice partition units
(see figure 1) on which to impose the quoted conditions. The technical problem consists
then in the increasing difficulty of proving the existence of positive solutions of the linear
system of equation (3) and (6) if larger and larger lattice partition units are used.

In the next section a procedure for facing such a problem is described and example
solutions are given in the case of a2D triangularFF. Such solutions allow us to develop an
efficient MC cluster dynamic in theFF (the SW dynamic is completely unsuccessful) whose
performances are described in terms of the properties of the corresponding percolation
model. The technique outlined below may be applied straightforwardly to other more
complex spin systems and specifically toSG.

2. Explicit cluster definitions in the FF

The system of equations (3) grows exponentially with the size of the ‘basic unit’ of the
lattice partition, but it always has solutions in the form of a factorized product of solutions
of its subsections. This implies thatKF weights for the cluster definition are always possible
in a factorized form. For frustrated spin systems, however, the request to satisfy conditions
(6) generally leads to this kind of solution being discarded.

The problem is solving, with positivewα, the coupled system of mapping equations (3)
and conditions (8) or (6), may of course be greatly simplified exploiting the eventual
rotational and reflection symmetries of the basic unit to choose the weightswα for the
allowed configurations of bonds (for some more tricks to deal with the〈γij 〉l see [12]). But
a crucial observation to find solutions of such a system is to note that the form itself of (3)
implies, atT = 0, that only a few bond graphsα have weightwα(T = 0) different from
zero, i.e. those appearing exclusively in the equations of (3) which correspond to ground-
state spin configurations on the basic partition units. This drives from the fact that the
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right-hand side of equation (3) atT = 0 is zero unless one evaluates it on a ground state.
To simplify notations let us call such bond graphs ‘fundamental graphs’ (see the examples
in figures 2 and 3).

Moreover, many ‘fundamental graphs’ are discarded (i.e. assigned a zero weight) under
conditions (6) or (8) (see figure 2). As a matter of fact, such aT = 0 analysis is an easy
pre-test to understand if it is possible to impose all equations (8), unconditionally or if it
is necessary to adopt the less restrictive conditions (6) to avoid finding it absurd discarding
too many graphs.

In the case of a2D triangular isotropicFF lattice [17] (i.e. a2D triangular isotropic
antiferromagnet) if the partition is made of three spin ‘single plaquette’ as basic units (see
figure 1(b)), these prescriptions lead straightforwardly to the following unique solution of (3)
and (8) in the rangeT ∈ [0, ∞] (see figure 2):

w0 = e−4βJ

w1 = (1 − e−4βJ )/2 (9)

w2 = w3 = 0

wherewα (α = 0, 1, 2, 3) is the weight of configurations with a number of bondsα (this
solution was found previously in a different way in [19]).

If the partition of the2D triangular FF lattice is made of larger basic units consisting
of ‘three plaquettes’ of six spin, as in figure 1(c), it is possible to find many solutions of
equations (3) and (8), however, at low temperature they differ at most for terms of the
order of e−4βJ . Following the previous reasoning we at first individuate the ‘fundamental
graphs’ compatible with conditions (8) (see figure 3). Then to easily obtain solutions
{wα}, we imposewα = 0 for each bond configurationα which is not a subgraph of these
‘fundamental graphs’ satisfying (8). Consequently, all the allowed bond configurations by
definition satisfy (8) (i.e. equation (6)) for all values ofT , because in our case the〈SiSj 〉l
do not change sign withT .

According to these simple rules, it is possible to obtain many solutions and here I present
a simplified version based on just three of the four kinds of ‘fundamental graphs’ allowed
for a ‘three plaquettes’ unit on aFF (see figure 3) so to have to deal with the lowest number
of graphs (the excluded ‘fundamental graph’, depicted in figure 3(d), has zero weight at
T = 0). To further distinguish different bond graphs I used the above quoted symmetry
arguments, and so characterized them by two indices(h, k) of which the first indicates the
total number of bonds of the graph and the second the ‘fundamental graphs’ of which it is
a subgraph. In more complex cases better discrimination may be useful, but the main line
is similar to the simple one outlined here to easily explain the procedure.

The following solution is valid in the range (in units J/KB) 0 6 T 6 31.958 (we are
interested in the low temperature region), and was selected among the others for the very
low number of different graphs it includes (it has just 48 different graphs, while theKF

solution for the same unfrustrated unit has 512 graphs, see figure 3):

w0,7 = x3

w1,7 = x2(1 − x)/2
w1,2 = 11x2(1 − x)/20
w2,1 = w2,7 = x(1 − x)2/4
w2,2 = x(15− 32x + 17x2)/40
w3,4 = w3,1 = (1 − x)3/8
w3,2 = (15− 55x + 69x2 − 29x3)/40

(10)
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with all other wh,k equal to zero (h = 0, 1, . . . , 9 k = 1, 2, . . . , 7) and x = e−4βJ .
Specifically, k = ∑

i bi2i−1, where i = 1, 2, 3 is the ordering number of the exploited
fundamental graphs (respectively depicted in figures 3(a)–(c) and bi is one if the bond
configuration is a subgraph of theith fundamental graph and zero otherwise (see figure 3);
h is, as just stated, the total number of bonds of the configuration (different graphs with
the sameh andk are considered equivalent and have the same statistical weight). So, for
example,w1,7 is the weight of the graphs which have one bond and are a subgraph of
‘fundamental graphs’ number 1, 2 and 3. Note that solution (10) is not just a trivial product
of solution (10), and that the net effect of conditions (6) or (8) is to make clusters as filiform
as possible.

According to the given prescription, the problem of discriminating between the
exponentially large number of possible graphs on the basic units is primarily reduced to
the determination of special classes of ‘fundamental graphs’ as indicated by the formal
properties of equation (3), graphs strictly related to the structure itself of spin ground states
on the basic units.

3. Monte Carlo results

The results of the previous section may be important in understanding if the criterion to
exploit larger and larger units in the partition of the spin lattice to build clusters, which
satisfy conditions (6) allows us to define in successive approximation clusters percolation
critical properties as near as possible to the spin critical one. We are also interested to
verify if such a criterion is well grounded to individuate efficientMC cluster dynamics
and, moreover, if it has a reasonably fast convergence. A clear marker of its success in
individuating ‘good’ clusters is its efficiency in pushingTp towardsTc.

Examining the properties of the cluster defined in the previous section, we can derive
some information in these directions in the case of the two-dimensional triangularFF and
thus formulate a possible panorama for more complex spin systems. UsingMC simulations
it is possible to easily estimate, for the clusters defined above, the percolation temperature
Tp where the mean cluster sizeS diverges. S is defined asS = ∑′

snss
2, wherens is

the mean number of clusters of sizes, and
∑′

s is the sum over all clusters of finite size
[15]. Our MC simulations were based on both standard Metropolis and the presented cluster
algorithms. The lattice sizesL considered were in the range 486 L 6 156 (in some cases
48 6 L 6 240). The number ofMC lattice updates per run was, depending onL and T ,
of about 105 after 104 were discarded to equilibrate the system. With a finite-size scaling
analysis [18] I found the following results:

Tp0 = 2.5 ± 0.1 Tp1 = 1.23± 0.05 Tp2 = 0.93± 0.05 (11)

where Tp0 is the percolation temperature forKF (i.e. CK or SW) pioneering clusters
(figure 1(a)), Tp1 for clusters built adopting as a basic unit a ‘single plaquette’ (figure 1(b))
and weights given by (10), andTp2 for clusters based on the larger partition unit of ‘three
plaquettes’ (figure 1(c)) characterized by equations (10) (temperatures are measured in
absolute units J/kB). In all these cases, as expectedTp > Tc = 0, the critical percolative
exponents of the cluster mean square radiusν and mean cluster sizeγ are in the2D random
bond percolation universality classν = 4

3 andγ = 43
18, and equal toν = 1.33± 0.03 and

γ /ν = 1.90±0.05 for the ‘single plaquette’ case andν = 1.33±0.03 γ /ν = 1.85±0.05 for
the ‘three plaquettes’ one. This is illustrated in figure 4 where the finite-size scaling analysis
for the mean cluster sizeS of ‘single’ and ‘three plaquettes’ based clusters is reported. Such a
result means physically that there are no thermodynamical effects underlying the percolative
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Figure 4. Finite-size scaling of the mean cluster sizeS for (a) ‘single’ and (b) ‘three
plaquettes’ built clusters (i.e. clusters from equations (10) and (10), respectively). In case
(a) Tp = 1.23 ± 0.05 while in case (b) Tp = 0.93 ± 0.05. Percolative exponents are, in the
range of errors, equal to those of random percolation.

transition. It is important to stress that the lowering ofTp corresponds to an increase in
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Figure 5. The logarithm of the mean number of clustersNc in the system atT = Tc = 0 as a
function of the logarithm of the linear system sizeL, for ‘single’ (triangle) and ‘three plaquettes’
(circle) built clusters. In both casesNc grows quadratically withL (see the text). Straight lines
are best-fit linear interpolations.

the performance ofMC cluster dynamics (see below) based on the presented definitions of
clusters equations ((10) and (10)), also if the slow convergence ofTp towardTc = 0 clearly
indicates the kind of difficulties one must expect in the case of more complex systems as
disordered and frustrated ones.

Another important phenomenon is to be noted: whileKF clusters belowT ∼ 1 froze
the whole lattice in a single huge cluster, in the case of the ‘single plaquette’ and ‘three
plaquettes’ based clusters, also atT = 0, there are many independent clusters. AtT = 0
the mean number of clustersNc scales as (see figure 5):

Nc = ALµ (12)

with µ ∼ 2, and specificallyµ = 1.9 ± 0.1 andA = 0.07± 0.02 in the ‘single plaquette’
case andµ = 1.99 ± 0.07 andA = 0.025± 0.007 in the ‘three plaquettes’ one. This
behaviour is consistent with the observation that the largest cluster does not cover the
whole lattice even atT = 0. It is possible to see that atT = 0 the largest cluster in the
system, which is the only one to percolate, follows a scaling law likeSmax = BL2 where
Smax is the mean number of spins which belong to it andL the lattice size.MC results
give B = 0.924± 0.002 for ‘single plaquette’ andB = 0.944± 0.001 for ‘three plaquette’
clusters (forKF it is B = 1).

For the lattice sizesL 6 240 which I explored,MC data from preliminary runs of light
statistic (3× 105 MCS) show atT = 0 fractal behaviour for mean numbers of spinsSII in
the second largest cluster of the system,SII = CLDII , with DII ∼ 0.6 for both ‘single’ and
‘three plaquettes’ case.
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The above presented phenomenon, and specifically the existence of a huge number
of clusters also atT = Tc = 0, has an important consequence onMC cluster dynamic
performances. WhileSW cluster dynamic results are totally inefficient, freezing the lattice
in a single cluster, preliminary runs show thatMC dynamics based on clusters from
equations (10) and (10) are also active atT = 0. Their decorrelation times are of the order
(smaller for temperatures higher thanT ∗ ∼ 0.4) of those of a standard Metropolis single
spin-flip dynamic [19] (autocorrelation times for the square magnetization are extremely
low even atT = 0, a fewMC step per spin).

The fact that dynamical times of ‘single’ and ‘three plaquettes’ basedMC dynamics are
comparable to Metropolis, is to be expected: their clusters do not express the correlations
in the systems because of the finite gap betweenTp and Tc, but they flip many clusters
(Nc ∼ L2) also atTc = 0 and so their moves are substantially equivalent to a normal
Metropolis.

The slow convergence ofTp towardsTc is then (at least partially) compensated by the
existence of a great number of clusters also atTc. This new phenomenon originated by
the geometry of the new clusters then has an important consequence on theMC cluster
dynamics’ performance. The favourable properties of the presented clusters are strictly
related to the fact that they obey conditions (6) via (8): in fact, solutions of (3) chosen
according to merely ‘reasonable’ arguments, have proved completely wrong [19], having
properties substantially equal to those of the simpleKF (i.e. CK or SW) clusters.

4. Discussion and conclusions

This paper has been focused on the problem of mapping spin systems into percolation
models to individuate clusters with suitable properties to give a percolation description of
the spin-critical phenomenon, and to test the applicability of some new general criterion to
build generalMC efficient cluster dynamics [12]. This mapping was realized through the
generalization of the Kasteleyn and Fortuin formalism given by equation (3). The many
solutions of such a mapping were selected according to condition (6), whose crucial role
was stressed. This condition is based on the recent idea that to obtain clusters suitable for
efficient MC dynamics it is highly useful to select them in order to make their percolation
connectivity function as similar as possible to the spin correlation function [12].

A procedure to solve the system of mapping equation (3) and conditions (8) (if conditions
(8) can be satisfied, they are equivalent to (6)) has also been presented and explicit solutions
in the case of2D triangularFF given in (10) and (10).

This quoted scheme for suitable cluster individuation in Ising systems, has, in fact, a
wide generality, and also the technical procedure to get explicit definitions, presented for the
FF, results from an easy implementation in general frustrated Ising systems. An interesting
and straightforward application of it would be, for instance, to2D triangularSG where the
complication with respect to the case dealt with here consists in the mere necessity of
considering the various kinds of ‘basic units’ of the lattice partition and not just the fully
frustrated one. An application of these methods has also been exploited in frustratedXY

models [21].
From the explicit solutions given for theFF, new clusters definitions were introduced in

such system, whose percolation pointTp was, in fact, systematically lowered towards the
critical oneTc, as expressed in (11). Moreover, in contrast to theSW cluster dynamic,MC

cluster algorithms based on such solutions, even if not optimal because of the finite gap
Tp − Tc, for their specific geometrical properties do not freeze the system even at criticality
and, in theFF, result comparable to Metropolis single spin flip. BeingTp > Tc, this result
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is not surprising as discussed above, and the evident improvement obtained with respect to
theSW dynamic and the success in narrowing the gapTp −Tc should encourage the research
of faster and faster cluster algorithms in the lowT region of frustrated systems. It would
be interesting to make a more detailed study of time properties of such cluster dynamics in
these systems where the Metropolis critical slowing down exponentz is very high.

So, even if the slow convergence ofTp towardsTc found in theFF signals the difficulties
to be faced in the applications of such methods to more complex cases, at the same time,
the possibility of substantially reducingTp may give rise to very efficientMC explorations
of the low temperature region in these systems, even if not exactly atTc.
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